Acta Crystallographica Section E

Structure Reports
 Online

cis-Bis[(1 H -benzimidazol-2-yl)methanol- $\kappa^{2} \mathrm{~N}, \mathrm{O}$ -bis(thiocyanato- κ N) cobalt(II)

ISSN 1600-5368

Ming-Hua Zeng, ${ }^{\text {a }}$ Yan-Ling Zhou ${ }^{\text {a }}$

 and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.037$
$w R$ factor $=0.101$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

The title complex, $\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$, possesses crystallographically imposed twofold symmetry. The $\mathrm{Co}^{\mathrm{II}}$ atom is coordinated by four N atoms and two O atoms in a distorted octahedral geometry. The crystal packing is stabilized by weak intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

Comment

2-Hydroxymethylbenzimidazole, an organic compound with a known crystal structure (Aubry et al., 1995), affords, with transition metal salts such as cobalt(II) halides, adducts having a 1:3 metal to ligand stoichiometry. In solution, the ligand is able to chelate to cobalt (Rzepka \& Surga, 1993). Cobalt(II) thiocyanate forms a 1:2 adduct (Artemenko \& Slyusarenko, 1971), with the three-dimensional structure revealed in the present study of the title compound, (I).

(I)

In (I), the ligand chelates through the hydroxy O and imino N atoms, resulting in a cis $-\mathrm{N}_{4} \mathrm{O}_{2} \mathrm{Co}$ octahedral geometry (Table 1) at the metal center (Fig. 1), like that observed in copper (Hamilton et al., 1979) and nickel (Alagna et al., 1984) adducts. The complex has twofold crystallographic symmetry. The crystal packing in (I) is stabilized by weak intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 2).

Experimental

(1H-Benzimidazol-2-yl)methanol was purchased from a chemical supplier. This reagent ($0.15 \mathrm{~g}, 1 \mathrm{mmol}$), cobalt(II) nitrate hexahydrate ($0.15 \mathrm{~g}, 0.5 \mathrm{mmol}$) and ammonium thiocyanate ($0.08 \mathrm{~g}, 1 \mathrm{mmol}$) were dissolved in water $(10 \mathrm{ml})$ that was kept at about 333 K . Red platelets separated from the solution after two weeks.

Crystal data

$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=471.42$
Monoclinic, C2/c
$a=15.318$ (1) A
$b=8.3847$ (7) \AA
$c=16.140$ (1) \AA
$\beta=109.771(1)^{\circ}{ }^{\circ}$
$V=1950.7(3) \AA^{3}$

Received 26 July 2006
Accepted 2 August 2006

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.638, T_{\text {max }}=0.926$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.058 P)^{2} \\
&+0.7176 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.36 \text { e } \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Co1-O1	$2.268(2)$	Co1-N3	$2.049(2)$
Co1-N1	$2.077(2)$		
O1-Co1-O1 1^{i}	$89.6(1)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$158.7(1)$
O1-Co1-N1	$74.9(1)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 3$	$94.6(1)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$89.9(1)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{i}}$	$99.3(1)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 3$	$86.2(1)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{i}}$	$98.6(1)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{i}}$	$172.8(1)$		

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{S} 1^{\text {ii }}$	$0.86(3)$	$2.35(3)$	$3.199(2)$	$176(3)$
N2-H2 $1^{\text {iii }}$	$0.86(3)$	$2.54(3)$	$3.360(2)$	$161(3)$
Symmetry codes: (ii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;$ (iii) $-x+\frac{3}{2},-y+\frac{3}{2},-z+1$				

The C -bound H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.95-0.99 \AA$) and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The amino and hydroxy H atoms were located in a difference Fourier map and refined isotropically with distance restraints of $\mathrm{O}(\mathrm{N})-\mathrm{H}=0.85$ (1) \AA.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve

Figure 1
The molecular structure, showing displacement ellipsoids drawn at the 75% probabilty level and the atom labelling. [Symmetry code: (i) $1+x$, $-y, z-\frac{1}{2}$.]
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the Natural Science Foundation of Guangxi Province (grant No. 0447019) and the University of Malaya for supporting this study.

References

Alagna, L., Hasnain, S. S., Piggott, B. \& Williams, D. J. (1984). Biochem. J. 220, 591-595.
Artemenko, M. V. \& Slyusarenko, K. F. (1971). Ukr. Khim. Zhur. 37, 753-758. (In Russian.)
Aubry, A., Brembilla, A., Faivre, V. \& Lochon, P. (1995). Acta Cryst. C51, 115116.

Bruker (1999). SAINT (Version 6.45A) and SMART (Version 6.45A). Bruker AXS Inc, Madison, Wisconsin, USA.
Hamilton, G. J., Ferraro, J. R. \& Sinn, E. (1979). J. Chem. Soc. Dalton Trans. pp. 515-519.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rzepka, M. \& Surga, W. (1993). Pol. J. Chem. 67, 2121-2132.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

